



## GENES PANEL SEQUENCING IN ONCO-HAEMATOLOGY

## **GENE PANELS IN ONCO-HAEMATOLOGY**



Cancer is characterised by uncontrolled cell proliferation. This results from specific acquired alterations of cellular DNA.

Molecular biology techniques, and most recently next generation sequencing of tumour genomes, have enabled the identification of genetic determinants that affect the sensitivity of cancer cells

to anti-cancer treatments.

Genetic abnormalities need to be identified in haemopathy cases, in order to allow groups of patients with similar molecular characteristics to be offered treatments adapted to the severity of the disease and/or targeted to the genetic abnormalities found. The number of patients requiring NGS analysis is ever-increasing. Medical prescriptions guided by the molecular analysis of cancers represent a far more precise medicine than conventional chemotherapy and by extension, qualifies them as "personalised medicine" or "precision medicine". The continual arrival of new targeted treatments foreshadows a profound evolution of clinical practice in Onco-Haematology. The molecular analyses involved in this precision medicine impose major technological and organisational changes in the laboratories making use of them.

Several scientific societies have recommended lists of clinically relevant genes by subtype of malignant haemopathy, the sequencing of which will be included in diagnostic reporting.

Today, Laboratoire Cerba which is at the forefront of innovation in the field of specialised biology at its Saint-Ouen-L'Aumône site close to Paris, possesses the technology and the technical, bioinformatics and medical expertise to carry out very high-throughput sequencing analyses in Onco-Haematology, in accordance with the recommendations of national and international scientific and medical societies. Working in close cooperation with clinicians, Laboratoire Cerba thus joins the limited circle of laboratories capable of carrying out these analyses, bringing access to precision medicine to a greater number of patients.

| Panels                  | Myeloproliferative<br>neoplasms (MPN)  | Myelodysplastic<br>syndrome (MDS)      | Acute myeloid<br>leukaemia (AML)       | Pan-Myeloid<br>gene                    |
|-------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|
| Number of genes studied | 16                                     | 32                                     | 35                                     | 41                                     |
| Samples                 | 2x5 ml whole blood<br>EDTA             | 2 ml bone marrow<br>EDTA               | 2 ml bone marrow<br>EDTA               | 2 ml bone marrow<br>EDTA               |
| Clinical<br>information | Fill in the<br>oncohaematology<br>form | Fill in the<br>oncohaematology<br>form | Fill in the<br>oncohaematology<br>form | Fill in the<br>oncohaematology<br>form |
| Time to results         | 4–6 weeks                              | 4–6 weeks                              | 4–6 weeks                              | 4–6 weeks                              |

In practice:

## **INSTRUMENTS AVAILABLE AT LABORATOIRE CERBA:**



## LIST OF GENES AVAILABLE (JANUARY 2017):

| GENES      | EXONS     | GENES            | EXONS                        |
|------------|-----------|------------------|------------------------------|
| A SXL1     | 12        | KIT D816 & OTHER | 2,8 to 14 and 17             |
| BCOR       | full      | KRAS             | 2 and 3                      |
| BCORL1     | full      | MPL              | 4,10,12                      |
| BRA FV600E | 15        | NPM1             | 11                           |
| CALR       | 9         | NRAS             | 2 and 3                      |
| CBL        | 8 and 9   | PHF6             | full                         |
| CEBPA      | full      | PT EN            | 5 to 7                       |
| CSF3R      | 14 to 17  | PT PN11          | 3 and 13                     |
| CSNK1A1    | full      | RA D21           | full                         |
| CUX1       | full      | RUNX1            | full                         |
| DNMT 3A    | full      | SET EP1          | 4 (partial AA 400 to<br>950) |
| ET V6      | full      | SF3B1            | 11 to 18                     |
| EZH2       | full      | SH2B3            | full                         |
| FLT3       | 14+15+20  | SRSF2            | 1                            |
| GATA 1     | 2 and 3   | STA G2           | full                         |
| GATA 2     | full      | T ET 2           | full                         |
| GNA S      | 8 and 9   | TP 53            | full                         |
| IDH1       | 4         | U2AF1 (U2AF35)   | 2 and 6                      |
| IDH2       | 4         | WT1              | full                         |
| JA K2      | 12 and 14 | ZRSR2            | full                         |
| KDM6A      | full      |                  |                              |

Custom gene panels can be designed based on specific request.



